
Implementing RISC-V Scalar Cryptography/Bitmanip extensions in
Chisel

Hongren Zheng
zhenghr22@mails.tsinghua.edu.cn

2022-08-27

Hongren Zheng Zk/Zb in Chisel 2022-08-27 1 / 22

zhenghr22@mails.tsinghua.edu.cn

Section 1

Background

Hongren Zheng Zk/Zb in Chisel 2022-08-27 2 / 22

Motivation

I was working on a project called OpenRigil
Open Source RISC-V cryptographic hardware token
Now public at https://github.com/OpenRigil
Target to be one alternative to Yubikey
Highlight: it is all in Chisel

Decide to use Rocket Chip as the base system
But, Rocket Chip lacked the support of Scalar Crypto extension (Zk)

To meet my requirement, I added it
I also added the support of Bitmanip extension (Zb)

Zbk* and Zb* overlap a lot
So I added it with small efforts

Hongren Zheng Zk/Zb in Chisel 2022-08-27 3 / 22

https://github.com/OpenRigil

RISC-V Background

RISC-V is an open standard ISA
First developed in Berkeley around 2010
Unlike proprietary/private standards like x86/ARM
Now it is widely adopted and has many ISA extensions

In Autumn 2021, RISC-V ratified Scalar Crypto and Bitmanip Extension
Zk extension
Zb extension
One special note: there is no ”K” extension or ”B” extension

Hongren Zheng Zk/Zb in Chisel 2022-08-27 4 / 22

RISC-V Zk

Crypto Bitmanip
Zbkb: common bitmanip for crypto, e.g. rotation/byte-reverse
Zbkc: carry-less multiplication
Zbkx: crossbar (xbar) permutation

Zkn: NIST cipher suite
Zkne/Zknd: AES enc/dec
Zknh: hash function SHA256/SHA512

Zks: ShangMi cipher suite
Zksed: SM4 enc/dec
Zksh: hash function SM3

Zkr: Entropy Source Extension
Zkt: Data Independent Execution Latency

Hongren Zheng Zk/Zb in Chisel 2022-08-27 5 / 22

RISC-V Zb

Zbb: Basic bitmanip, similar to Zbkb
Zbc: carry-less multiplication, Similar to Zbkc
Zba: Useful arithmetic operations (no official name)
Zbs: single bit instructions

Hongren Zheng Zk/Zb in Chisel 2022-08-27 6 / 22

Chisel: the HDL

Chisel is a modern language
Used many higher-order function in my design
Clearly describe the circuit

Chisel is for parameterizable circuit
In our project, designs could be reused between RV32 and RV64

Chisel util are useful
e.g. for rotation, I could just use rotateRight
instead of combining << and >>

Hongren Zheng Zk/Zb in Chisel 2022-08-27 7 / 22

Section 2

Designs

Hongren Zheng Zk/Zb in Chisel 2022-08-27 8 / 22

Design goal

Rocket Chip: Area
Its ALU is really small (see next slide)
Reuse as many datapaths as possible

In comparison, XiangShan: Frequency
Big core
Focus on performance

Hongren Zheng Zk/Zb in Chisel 2022-08-27 9 / 22

Rocket Chip ALU

input

adder

shifer

logic

compare

in1

adder_in1

in1_sext shin_r

and
&

xor^

in2

in2_inv

~

&

adder_out
+

adder_in2

^

+

slt

shinreverse shout_r>> shoutreverse

logic

|

|
cmp

Hongren Zheng Zk/Zb in Chisel 2022-08-27 10 / 22

Architecture Overview

IF ID EXE MEM WBABLU

BKU

Classical five stages: IF, ID, EXE, MEM, WB
EXE means Execution, it often contains ALU (Arithmetic Logic Unit)
My work: in EXE stage

Add BKU (Bitmanip Crypto Unit)
Replace ALU with ABLU (Arithmetic Bitmanip Logic Unit)

Hongren Zheng Zk/Zb in Chisel 2022-08-27 11 / 22

K in BKU: Overview

rs2rs1

ShiftRowsRotateRight

rnum 8 SBox

MixColumn64

rs1 rd

(a) AES for RV64

rs2

bs

rs1

rd

Byte Select

SBox

MixColumn8

bs RotateRight

XOR

(b) AES for RV32

rs2

bs

rs1

rd

Byte Select

SBox

y1 y2

bs RotateRight

XOR

(c) SM4

Merged several instructions into one datapath
Reuse common module between RV32 and RV64 for AES

Hongren Zheng Zk/Zb in Chisel 2022-08-27 12 / 22

AES review

Multi-round encryption
Input: 16 bytes, view as a 4x4 matrix
Row Shift: shift one row
SBox: substitute every byte
Mix Column: matrix multiplication
XOR with round key

Key expansion
Generate round key with initial key via some SBox and XOR

Hongren Zheng Zk/Zb in Chisel 2022-08-27 13 / 22

Reuse across RV32/RV64

class MixColumn8(enc: Boolean) {
val out = if (enc) ... else ...

}

class MixColumn64(enc: Boolean) {
VecInit(io.in.asBools.grouped(32).map(VecInit(_).asUInt).map({

...
val m = Module(new MixColumn8(enc))

}
}

Mixcolumn
RV32, operate on 1 byte (Mixcolumn8)
RV64, operate on 16 bytes (Mixcolumn64)
Direction as parameter: encryption and decryption
Used Mixcolumn8 to build Mixcolumn64
higher-order functions are helpful
Hongren Zheng Zk/Zb in Chisel 2022-08-27 14 / 22

Reuse across RV32/RV64

class CryptoNIST(xLen: Int) {
val aes = if (xLen == 32) { ... } else { ... }

}

Top module: xLen as parameter
Generate different RTL based on xLen

Hongren Zheng Zk/Zb in Chisel 2022-08-27 15 / 22

Another example: GFMul

class GFMul(y: Int) extends Module {
val io = IO(new Bundle {

val in = Input(UInt(8.W))
val out = Output(UInt(8.W))

})

io.out := VecInit(
(if ((y & 0x1) != 0) Seq((io.in)) else Nil) ++
(if ((y & 0x2) != 0) Seq(xt(io.in)) else Nil) ++
(if ((y & 0x4) != 0) Seq(xt2(io.in)) else Nil) ++
(if ((y & 0x8) != 0) Seq(xt3(io.in)) else Nil)

).reduce(_ ^ _)
}

In AES we only need to multiply a constant y in Galois field
But several constants are needed, so how about a parameterized module
Another level of meta: UInt from Chisel (circuit) and Int from Scala

Hongren Zheng Zk/Zb in Chisel 2022-08-27 16 / 22

B in BKU: Zbc/Zbkc/Zbkx

val clmul = clmul_rs2.asBools.zipWithIndex.map({
case (b, i) => Mux(b, clmul_rs1 << i, 0.U)

}).reduce(_ ^ _)(xLen -1,0)

val xperm8 = VecInit(rs2_bytes.map(
x => Mux(x(7,log2Ceil(xLen/8)).orR,

0.U(8.W), rs1_bytes(x)) // return 0 when x overflow
).toSeq).asUInt

This is much easier to understand
Verilog example: see chipsalliance/rocket-chip#2906
full of indices (or used generate)

Hongren Zheng Zk/Zb in Chisel 2022-08-27 17 / 22

ABLU

ABLU: merge common logic of bitmanip into ALU
Some logic could be reused, for example
∼b (from substraction in adder)
Reverse (from shift left in shifter)

ANDN
ANDN: a & ∼b
Can just be implemented along side AND: a & b
Reuse ∼b
Result: a & Mux(∼b, b)
Reusing 64 and gates

ROR and ROL
Reuse Reverse in ALU for ROL

CPOP
just use PopCount from chisel3.util!

Hongren Zheng Zk/Zb in Chisel 2022-08-27 18 / 22

ABLU diagram

input

processed_input

adder

shifer

logic

compare

popcount

io.in1

in1_rotate

in1_sext

in1_zext maxmin

popcount

io.in2

in2_inv

~

adder_in2

logic_in2

in1_ext

in1

shin1
<<1

shin2<<2

shin3

<<3

1.U in1_rreverse

adder_in1_r
for CLZW

shift_r

>>

rotate_r

rotateRight

adder_in1

adder_out

and

xor

~0.U for CTZ/CLZ

out_inv

slt

shro_r shroreverse

logic

bextorR

tz_inw

ctzw

cmp

tz_outorR

Hongren Zheng Zk/Zb in Chisel 2022-08-27 19 / 22

Section 3

Evaluation

Hongren Zheng Zk/Zb in Chisel 2022-08-27 20 / 22

Speedup
Running in xc7k325tffg900-2 FPGA, 100 MHz
Baseline: software-only OpenSSL
Target: Hardware accelerated OpenSSL
For RV64, up to 10X for AES, 5X for SM4
For RV32, up to 4X for AES, 3.7X for SM4

16 64 256 1024 8192 16384
Input size (Byte)

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

Performance of AES-256-gcm-clmul in RISC-V 64 Rocket-Chip
C
RV64I ASM
RV64I ZKN ASM

16 64 256 1024 8192 16384
Input size (Byte)

0

1

2

3

4

5

Sp
ee

du
p

Performance of SM4-gcm-clmul in RISC-V 64 Rocket-Chip
C
RV64I ZKS ASM

Hongren Zheng Zk/Zb in Chisel 2022-08-27 21 / 22

Area

ZKN and ZKS: the size of a multipler/divider

Module Area Area, RV32
Rocket 67377 36346
ALU 1721 791
ABLU 4309 1953

xperm/clmul 7612 2008
DIV 8015 3107
ZKN 6804 1829
ZKS 709 707

Hongren Zheng Zk/Zb in Chisel 2022-08-27 22 / 22

	Background
	Designs
	Evaluation

