Implementing RISC-V Scalar Cryptography/Bitmanip extensions in

Chisel

Hongren Zheng
zhenghr22@mails.tsinghua.edu.cn

2022-08-27

Hongren Zheng Zk/Zb in Chisel 2022-08-27

zhenghr22@mails.tsinghua.edu.cn

Section 1

Background

Hongren Zheng Zk/Zb in Chisel 2022-08-27

m | was working on a project called OpenRigil
m Open Source RISC-V cryptographic hardware token
m Now public at https://github.com/OpenRigil
m Target to be one alternative to Yubikey
m Highlight: it is all in Chisel

Decide to use Rocket Chip as the base system

But, Rocket Chip lacked the support of Scalar Crypto extension (Zk)
m To meet my requirement, | added it
m | also added the support of Bitmanip extension (Zb)

m Zbk* and Zb* overlap a lot
m So | added it with small efforts

Hongren Zheng Zk/Zb in Chisel 2022-08-27

https://github.com/OpenRigil

RISC-V Background

m RISC-V is an open standard ISA
m First developed in Berkeley around 2010
m Unlike proprietary/private standards like x86/ARM
m Now it is widely adopted and has many ISA extensions
m In Autumn 2021, RISC-V ratified Scalar Crypto and Bitmanip Extension
m Zk extension
m /b extension
m One special note: there is no "K" extension or "B" extension

Hongren Zheng Zk/Zb in Chisel 2022-08-27

RISC-V Zk

m Crypto Bitmanip

m Zbkb: common bitmanip for crypto, e.g. rotation/byte-reverse
m Zbkc: carry-less multiplication
m Zbkx: crossbar (xbar) permutation

m Zkn: NIST cipher suite

m Zkne/Zknd: AES enc/dec
m Zknh: hash function SHA256/SHA512

Zks: ShangMi cipher suite

m Zksed: SM4 enc/dec
m Zksh: hash function SM3

Zkr: Entropy Source Extension

Zkt: Data Independent Execution Latency

Hongren Zheng Zk/Zb in Chisel 2022-08-27

RISC-V Zb

m Zbb: Basic bitmanip, similar to Zbkb
m Zbc: carry-less multiplication, Similar to Zbkc
m Zba: Useful arithmetic operations (no official name)

m Zbs: single bit instructions

Zk/Zb in Chisel 2022-08-27

Hongren Zheng

Chisel: the HDL

m Chisel is a modern language

m Used many higher-order function in my design
m Clearly describe the circuit

m Chisel is for parameterizable circuit
m In our project, designs could be reused between RV32 and RV64
m Chisel util are useful

m e.g. for rotation, | could just use rotateRight
m instead of combining << and >>

Hongren Zheng Zk/Zb in Chisel 2022-08-27

Section 2

Designs

Hongren Zheng Zk/Zb in Chisel 2022-08-27

Design goal

m Rocket Chip: Area

m lts ALU is really small (see next slide)
m Reuse as many datapaths as possible

m In comparison, XiangShan: Frequency

m Big core
m Focus on performance

Hongren Zheng Zk/Zb in Chisel 2022-08-27

Rocket Chip ALU

input

M

inl_sext

shin_r

compare
slt cmp
adder
in2_inv adder_out
shifer

Zk/Zb in Chisel

Architecture Overview

BKU

[IF] [ID——{ABLU | MEM]——]WB]

m Classical five stages: IF, ID, EXE, MEM, WB

m EXE means Execution, it often contains ALU (Arithmetic Logic Unit)

m My work: in EXE stage

m Add BKU (Bitmanip Crypto Unit)
m Replace ALU with ABLU (Arithmetic Bitmanip Logic Unit)

Hongren Zheng Zk/Zb in Chisel 2022-08-27

K in BKU: Overview

rs2 rs2

rsl rs2 bs —»

N

| RotateRight [ShiftRows |

!
rum

MixColumn64

Byte Select

MixColumn8

bs —{ RotateRight

T rsl XOR sl XOR
rsl rd rd rd
(a) AES for RV64 (b) AES for RV32 (c) SM4

m Merged several instructions into one datapath
m Reuse common module between RV32 and RV64 for AES

Hongren Zheng Zk/Zb in Chisel 2022-08-27

m Multi-round encryption
m Input: 16 bytes, view as a 4x4 matrix
m Row Shift: shift one row
m SBox: substitute every byte
m Mix Column: matrix multiplication
m XOR with round key

m Key expansion
m Generate round key with initial key via some SBox and XOR

Hongren Zheng Zk/Zb in Chisel 2022-08-27

Reuse across RV32/RV64

class MixColumn8(enc: Boolean) {
val out = if (enc) ... else

}

class MixColumn64 (enc: Boolean) {
VecInit(io.in.asBools.grouped(32) .map(VecInit(_).asUInt) .map ({

val m = Module(new MixColumn8 (enc))

m Mixcolumn

RV32, operate on 1 byte (Mixcolumn8)

RV64, operate on 16 bytes (Mixcolumn64)
Direction as parameter: encryption and decryption
Used Mixcolumn8 to build Mixcolumn64
higher-order functions are helpful

Hongren Zheng Zk/Zb in Chisel 2022-08-27

Reuse across RV32/RV64

class CryptoNIST(xLen: Int) {
val aes = if (xLen == 32) { ... } else { ... }
}

m Top module: xLen as parameter
m Generate different RTL based on xLen

Hongren Zheng Zk/Zb in Chisel 2022-08-27

Another example: GFMul

class GFMul(y: Int) extends Module {
val io = IO(new Bundle {
val in = Input(UInt(8.W))
val out = QOutput(UInt(8.W))
b
io.out := VecInit(
(if ((y & 0x1) != 0) Seq((io.in)) else Nil) ++
(if ((y & 0x2) != 0) Seq(xt(io.in)) else Nil) ++
(if ((y & 0x4) != 0) Seq(xt2(io.in)) else Nil) ++
(if ((y & 0x8) != 0) Seq(xt3(io.in)) else Nil)
).reduce(_ =)
}

m In AES we only need to multiply a constant y in Galois field
m But several constants are needed, so how about a parameterized module
m Another level of meta: Ulnt from Chisel (circuit) and Int from Scala

Hongren Zheng Zk/Zb in Chisel 2022-08-27

B in BKU: Zbc/Zbke/Zbkx

val clmul = clmul_rs2.asBools.zipWithIndex.map ({
case (b, i) => Mux(b, clmul_rsl << i, 0.U)
}) .reduce(_ = _)(xLen-1,0)

val xperm8 = VecInit(rs2_bytes.map(
x => Mux(x(7,log2Ceil(xLen/8)) .orR,
0.U(8.W), rsl_bytes(x)) // return 0 when z overflow
) .toSeq) .asUInt

m This is much easier to understand

m Verilog example: see chipsalliance/rocket-chip#2906
full of indices (or used generate)

Zk/Zb in Chisel 2022-08-27

Hongren Zheng

ABLU

m ABLU: merge common logic of bitmanip into ALU

m Some logic could be reused, for example
m ~b (from substraction in adder)
m Reverse (from shift left in shifter)

= ANDN
ANDN: a & ~b
Can just be implemented along side AND: a & b
Reuse ~b
Result: a & Mux(~b, b)
Reusing 64 and gates
= ROR and ROL
m Reuse Reverse in ALU for ROL
m CPOP

m just use PopCount from chisel3.util!

Hongren Zheng Zk/Zb in Chisel 2022-08-27

ABLU diagram

inl_rotate

processed_input

adder_inl_r

adder_in

for CLZW

compare

~gaeRight

‘popeount

Section 3

Evaluation

Hongren Zheng Zk/Zb in Chisel 2022-08-27

Running in xc7k325tffg900-2 FPGA, 100 MHz
Baseline: software-only OpenSSL

Target: Hardware accelerated OpenSSL

For RV64, up to 10X for AES, 5X for SM4
For RV32, up to 4X for AES, 3.7X for SM4

Performance of AES-256-gcm-cImul in RISC-V 64 Rocket-Chip Performance of SM4-gcm-cimul in RISC-V 64 Rocket-Chip

59
= C = C] —
8 {| =3 RV64I ASM =3 RV64I ZKS ASM

B RV641 ZKN ASM

LEEEERE

16 64 256 1024 8192 16384 16 64 256 1024 8192 16384
Input size (Byte) Input size (Byte)

Hongren Zheng Zk/Zb in Chisel 2022-08-27

Area

m ZKN and ZKS: the size of a multipler/divider

Module Area Area, RV32
Rocket 67377 36346
ALU 1721 791
ABLU 4309 1953
xperm/clmul 7612 2008
DIV 8015 3107
ZKN 6804 1829
ZKS 709 707

Hongren Zheng Zk/Zb in Chisel 2022-08-27

	Background
	Designs
	Evaluation

